If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+8x-16=0
a = 5; b = 8; c = -16;
Δ = b2-4ac
Δ = 82-4·5·(-16)
Δ = 384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{384}=\sqrt{64*6}=\sqrt{64}*\sqrt{6}=8\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-8\sqrt{6}}{2*5}=\frac{-8-8\sqrt{6}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+8\sqrt{6}}{2*5}=\frac{-8+8\sqrt{6}}{10} $
| 13=-4{3x+1}+13x | | 74+64+x=180 | | d-(-2)=1 | | 2^3x-1=32 | | 37a-41=a+50 | | 4x+4=51 | | 2(x-5)+7=22 | | 3z+16=5z-37 | | 48=6(v-2) | | 4z-46+30=z+48 | | 4z-16=z+48 | | 25x+40=25x-40 | | 5(u-6)=7u-46 | | 7-3y=20 | | 7-3y(5-4)=20 | | 7-37y(5-4)=20 | | 17-q/8=13 | | 6x=-4x+70 | | 6x=-4x+40 | | 43+4x+(11-5x)=7 | | -3x=9x-48 | | 15x+31×3=-3 | | 27+9u=12u | | 2x-9=6x-25 | | -x=-8x+49 | | 2x-9=5x-25 | | 6x-15=6x+156x−15=6x+15 | | -4(3+15)+7y=20 | | -5x=10x+120 | | 14a+6=15a | | 3.5y=7/3 | | −6x=6x-12 |